SG5139

p. 1 of 37

The Design and Evaluation of “CAPTools” —
A Computer Aided Parallelization Tool-kit

Authors

Jerry Yan, Michael Frumkin, Michelle Hribar, Haogiang Jin, and Abdul Waheed
MS T27A-1, NASA Ames Research Center
Moffett Field, CA 94035-1000, USA

Steve Johnson, Mark Cross. Emyr Evans, Constantinos Ierotheou, and Pete Leggett
Parallel Processing Research Group,

University of Greenwich,

London SE18 6PF, UK

All correspondences should be addressed to Dr. Jerry Yan, 2 Pentland Gardens, London, SW18,
2AN (I am currently on sabbatical in London). E-mail: yan@nas.nasa.gov, Phone: +44-181-331-
8588; FAX: +44-171-371-0021

p. 2 of 37

The Design and Evaluation of “CAPTools” —
A Computer Aided Parallelization Tool-kit

Jerry Yan, Michael Frumkin, Michelle Hri- Steve Johnson, Mark Cross, Emyr Evans,

bar, Haoqiang Jin, and Abdul Waheed Constantinos Ierotheou, and Pete Leggett
MS T27A-1, NASA Ames Research Center Parallel Processing Research Group,
Moffett Field, CA 94035-1000, USA University of Greenwich,
London SE18 6PF, UK

Key Words. Automatic Parallelization, Software Tools, Performance Evaluation

Abstract. Writing applications for high performance computers is a challenging task. Although
writing code by hand still offers the best performance, it is extremely costly and often not very
portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help
automate the mapping of sequential FORTRAN scientific applications onto multiprocessors.
CAPTools consists of the following major components: an inter-procedural dependence analysis
module that incorporates user knowledge, a “self-propagating” data partitioning module driven
via user guidance; an execution control mask generation and optimization module for the user to
fine tune parallel processing of individual partitions, a program transformation/restructuring fa-
cility for source code clean up and optimization; a set of browsers through which the user inter-
acts with CAPTools at each stage of the parallelization process; and a code generator supporting
multiple programming paradigms on various multiprocessors. Besides describing the rationale
behind the architecture of CAPTools, the parallelization process is illustrated via case studies in-
volving structured and unsiructured meshes. The programming process and the performance of
the generated parallel programs are compared against other programming alternatives based on
the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a
discussion on the feasibility of constructing architectural independent parallel applications is pre-
sented.

1. Introduction

1.1. Motivation

Over the past decade, high performance computers based on commodity microprocessors have
been introduced in rapid succession from at least seven vendors/families. All of them supported
some form of message passing libraries, while the latest players in the market also supported

p. 3 of 37

some form of distributed share memory remote access primitives'. Many users have also con-
structed computing clusters using workstations and PC’s. They re-wrote their applications using
message-passing libraries (such as MPI and PVM) and reported very good price/performance

numbers.

Nevertheless, these advances have created a new class of problems involving multiple code ver-
sions. If a computer center were to procure only a quarter of these machines over the past ten
years, each machine would last no more than three years on average. In fact, a few such architec-
tures would often coexist at a site simultaneously. The average user would have to struggle with
two issues every time a new machine is introduced:

1. “Should I port my application to the new machine?” The user really has no choice but to
do so because the old machines will be decommissioned. Furthermore, there is some pres-
sure to attempt to fully utilize the computing performance potential of these new ma-
chines.

2. “How many versions of the source code should now be maintained?” Even though this
depends on the user base of the application, the user may still have to maintain three code
versions supporting: message passing standards, shared memory directives as well as vec-
tor processing.

Unlike scientists in the research laboratories, users in the commercial sector (e.g., aircraft indus-
try) have remained dependent on traditional vector architectures (e.g., Cray C90) because of two
reasons:

1. They are unwilling to abandon their trusted applications and develop new ones for the
new machines. These “legacy” applications have proven their worthiness well over many
years on specific architectures. The amount of time and investment required to validate
complete new applications is prohibitive.

2. They are unwilling to port (or rewrite) these trusted “legacy” applications onto the new
machines. Porting large applications is very expensive and time consuming. Furthermore,
there is no guarantee that their investment can be protected because of the short life time
these multiprocessors may exhibit.

Even more recently, a large effort has been expended in the development of underlying infrastruc-
ture to support the creation of wide area networks of computers, including large-scale machines,
to enable user access to them as a single computing resource. Projects such as NPACI 1], and

' Examples included: Intel’s IPSC/860, Delta and Paragon: all supported the NX message-passing library; TMC’s
CM-2, and CM-5 (which also operated in MIMD mode supporting an active messaging library called CMMD),
IBM’s SP1 and SP2: both support MPI and (IBM’s propriety) MPL libraries; Cray’s T3D and T3E support both
MPI as well as remote memory access; and SGI Origin 2000 and Sun’s Enterprise and HPC2 servers supports
both MPI as well as share memory messaging.

p- 4 of 37

PACI [2] have aimed to provide users transparent access to such a “computational grid”, which
is essentially a distributed, heterogeneous collection of parallel computers. Such grids pose many
new requirements with respect to programming models, compilation strategies and execution en-
vironments. With increasing application complexity and problem size, scientists may no longer
be able to afford to continue porting efforts every time a new machine is launched. Furthermore,
with the anticipation of the decommissioning of old machines, as well as demands for shorter exe-
cution time, alternative approaches to porting by hand must be investigated. In other words, the
production of efficient “architecture independent” parallel programs has become the next big
challenge in high performance computing.

1.2. Outline of the Paper

In Section 2, we first discuss the alternative approaches to parallelizing and maintaining legacy
applications. These include programming by hand, relying on parallelizing compilers supplied by
the vendor, annotate/rewrite application using data- and task- parallel directives/languages, as well
as rewriting application codes using semi-custom building blocks (or libraries). Given the state of
the art, an interactive toolkit for parallelization seems to be most fitting because the user can
supply his knowledge and influence the parallelization strategy while leaving the mundane error-
prone program transformation process to the toolkit. The design philosophy and architecture of
CAPTools are presented in Section 3. Implementation strategies that enable high performance
code optimization is then presented. These include: use of well-know techniques to handle com-
putations involving structured- and unstructured-meshes, techniques for dependence analysis and
data partitioning, parallel execution control determination, as well as communication identifica-
tion, migration and merger. The usage of CAPTools as well as the performance of the generated
code is presented and evaluated in Section 4. Results obtained from a detailed study based on
NAS Parallel Benchmarks indicate that CAPTools generated code that performs within 10% of
hand-written code. Finally. Section 0 presents a conclusion and a brief discussion of future work.

2. A Spectrum of Alternatives for Legacy Code Modernization

This section presents a state-of-the-art survey for these approaches and evaluates their suitabil-
ity for parallelizing legacy applications and their long-term maintenance.

2.1. Rewriting Applications by Hand

Although writing parallel programs by hand gives the best performance, it also requires the most
significant amount of effort. When a user rewrites a sequential program using message passing
(or remote memory access) primitives, they have complete control over data distribution and
parallelization strategies. Given sufficient feedback, the user can tune the program by improving
load balancing, minimizing data redistribution, and overlapping communication with computation
to minimize processor idle time. The major disadvantage with this approach is the immense re-

p. S of 37

sponsibility of ensuring the correctness of the implementation that comes from the user’s explicit
management of, for example, domain decomposition. This use of Single-Program-Multiple-Data
(SPMD) paradigm requires data to be distributed in a consistent fashion across the multiproces-
sors. Furthermore, communication must occur whenever a processor modifies a value required
by another processor. This update schedule must be performed in the right order and with
maximum efficiency to ensure correctness and performance. Message-passing programs, there-
fore, cannot be developed gradually by piecemeal conversion of a serial code. The entire program
must be converted all at once, putting message-passing at a distinct disadvantage compared to the
shared-memory paradigm, which at least, gives the appearance that it allows gradual paralleliza-
tion via insertion of parallelizing directives. Finally, as outlined in the Section 1.1, the anticipa-
tion of repeating this expensive, tedious, time consuming, error prone process every few years
makes this approach very unattractive.

2.2. Parallelizing Compilers with Directives

Some users may opt to rely on parallelizing compilers provided from the vendor. They antici-
pate that the insertion of a few “directives” together with a small amount of re-writing would en-
able their sequential program to perform well on these new machines?. The success of this ap-
proach depends on three important factors:

1. THE LEVEL OF SOPHISTICATION OF THE COMPILER. The user is completely dependent on the
compiler’s ability to discover parallelism, distribute data and accurately detect data de-
pendencies. The performance obtained depends on many factors, including thoroughness
of the interprocedural analysis as well as the ability to consider user knowledge about, for
example, application input parameters.

2. THE STRATEGIC PLACEMENT OF PARALLELIZATION DIRECTIVES. These directives take the
form of structured comments, they are ignored by non-parallelizing compilers. When no
directives are given, some parallelization or vectorization may still occur if the source code
is simple enough. The user may supply directives either to override data dependencies the
compiler failed to disprove or to enforce certain data placement strategies. Either way, it
requires a level of expertise not commonly possessed by application scientists.

3. USER’S ABILITY TO TUNE THE APPLICATION. Parallel code execution may not necessarily
improve performance. For example, loops can be interchanged to increase the grain-size of
individual parallel tasks to reduce tasking and communication overhead. The user must be
prepared to iteratively inspect performance data and modify the program accordingly.

2 yectorization and multi-tasking compiler directives have been defined and supplied by vendors such as Cray Re-
search [3], Advanced Parallel Research (FORGE) [4], Kuck and Associates (KAP/Pro Toolset) [5] and, Silicon
Graphics (MIPSpro Power Fortran (X3H5 compliant) and C (pragma-based directives)) [6].

p. 6 of 37

Furthermore, simple directives, such as $ DOACROSS, do not allow parallelism to be conveniently
specified across loop nests. For example, one of the most useful control structures in parallel
programming, the pipeline, cannot be expressed without making the domain decomposition ex-
plicit. This, compounded with a lack of control over data placement, may lead to severe per-
formance limitations. Finally, the use of parallelizing compilers suffers the same constraints as
vectorizing compilers in that it is only applicable on the multiprocessor for which the compiler
was designed. Nevertheless, the development of standards (such as OpenMP [7]) cannot be
simply overlooked. It offers a level of abstraction that may survive architectural evolution as
well as a goal towards which compiler writers may work.

2.3. Data and Task Parallel Languages

A third option involves the annotation of a sequential program using data distribution directives
offered in HPF [8] and related projects®. While the standardization of HPF implies portability,
its performance as well as its applicability over a wide range of scientific applications is still very
much in question. Users have reported that HPF programs run at least 2 times slower than their
message passing counterparts (even on one processor) [17]. Possible explanations include book-
keeping overheads as well as the lack of control for communication granularity [18]. Delivering a
portable but slow parallel program defeats the purpose of high performance computing. Al-
though HPF is simple and elegant, it is also limited in its ability to express parallelism. The pro-
posal of a follow-on standard, HPF-2, will cater for better handling of indexed arrays and task
parallelism. Unfortunately, this presents an even more daunting task before the compiler writers.
In the final analysis, inserting data partitioning directives manually in a large and complex appli-
cation is not straightforward. Until computer aided analysis [19, 20] could provide some guid-
ance in this process, modernizing legacy codes via rewrite using HPF is not a viable option even
if HPF performance were rcasonable.

Fx [21] and Fortran M [22] are two of the few* FORTRAN-based task parallel languages aimed
at supporting multi-disciplinary applications. Disjoint tasks may execute concurrently and
communicate’. There is no support for global (shared) data types within the tasks other than in
the data-parallel sense. Just as in the ‘bare’ message-passing environment, the user is responsible
for interpreting the meaning of arrays owned by the individual processors.

In summary, parallelizing legacy applications using data- or task-based parallel languages implies
a major re-coding effort. Research is still being carried out today to produce a language standard

> HPC++ [9], Vienna Fortran [10], C*[11], Annai [12], CM Fortran [13], PC++/Sage++ [14], Fortran D [15], and
Mentat [16].

“ Most of the proposed are not FORTRAN-based. These include Shared Data Abstractions (SDA’s) [23], Sisal
[24], and Split C [25].

* input and output mapping directives in Fx; channels and ports in Fortran M

p.70f37

that is both flexible in its ability to express parallelism and at the same time, allows efficient
compilation to take place so as to generate high performance programs.

2.4. Using Semi-Custom Building Blocks (or Libraries)

Ideally speaking, the user should not be forced to choose between flexible task parallelism (with
private, non-shared data types) and the convenience of using shared data types in data languages.
Parallel libraries accomplish this encapsulation by supporting atomic tasks on globally defined,
shared data types. The implementation of the library can be tailored to individual multiprocessor
architecture and be made hidden from the user. This offers a degree of portability as the library
writers are responsible for staying on top of evolving machine architecture. Nevertheless, opting
for libraries represents a compromise, since no library can be completely general-purpose. For
example, ScaLAPACK [26], a distributed-memory version of LAPACK, only supports those
problems that can be cast as numerical linear-algebra problems. Unfortunately, numerical linear
algebra problems are often embedded in larger applications. For instance, a finite-element code
may generate the stiffness matrix using a three-dimensional (3-D) block decomposition while the
resulting equation can only be solved in ScaLAPACK using a two-dimensional (2-D) decomposi-
tion. Remapping in this case will require a costly global exchange operation. Structured-grid ap-
plications that do not construct system matrices explicitly will not benefit from ScaLAPACK.
Many special-purpose parallel packages have also been developed. PETSc [27], for example,
offers a set of functions for manipulating® high level distributed data types, and a collection of
linear and nonlinear equation solvers. However, several data partitioning strategies and remote
access mechanisms’ required in complex CFD production codes are not supported.

In summary, parallel libraries derive their utility from execution efficiency, combined with their
ease of use. While customization improves user convenience, it sacrifices generality and expand-
ability for efficiency and simplicity. In principle, some legacy codes may be re-written using
parallel libraries. The amount of rewriting required and the performance of the resultant code is
yet to be determined. A detailed survey of the state-of-the-art developments in parallel library
projects can be found in [23].

¢ Distributed data types are created collectively, but may be manipulated collectively as well as individually. One-,
two- and three-dimensional distributed arrays are used to support structured-grid computations. Provisions are
made for overlap zones (ghost points) that can act as buffers for copies of data elements on geometrically neighbor-
ing processors. With the proper use of the assembly routines, it is possible, in principle, to program pipeline
control structures explicitly, which has the advantage that the grouping factor is under the control of the user.

7 PETSc only allows block-block distribution for its vectors and distributed arrays. There is no support for more
advanced domain decompositions, such as multi-partitioning or dynamic decompositions, such as those required
by transpose-based parallel algorithms. There is also no support for non-neighbor communications.

p. 8 of 37

2.5. Towards Computer Aided Parallelization Tools

Table 1 presents a concise comparison of the aforementioned approaches available for parallel
programmers. Basically, message-passing codes produced by hand exhibit the highest perform-
ance because the user can utilize their knowledge about the code to formulate a suitable paralleli-
zation strategy and tailor the implementation to the architecture. The use of libraries as well as
data- and task- parallel languages reduces the user's effort by shifting the machine-dependent im-
plementation details to compiler writers and library builders. Unfortunately, applications which
do not fit into pre-defined computation models and templates offered in the language/library ei-
ther cannot be implemented or must execute at a reduced level of performance. If portability
were not an issue, machine-specific parallelizing compilers, combined with detailed profiling and
user tuning produces acceptable performance for small codes. However, the need to limit com-
pile time reduces the thoroughness in which inter-procedural dependence analysis could be ap-
plied, thus affecting the quality and granularity of the parallel code produced for complex appli-
cations. In light of these concerns, interactive parallelization tool-kits should be the most prom-
ising approach to be investigated to assist the production of architecture-independent codes.

Table 1. A Comparison of Various Approaches Available for
Development and Maintenance of Parallel Applications.

Process Time/Effort Performance Portability Applicability/
Limitations
Rewritten Extensive code revi- Excellent when Dependent on port- Applicable to any
by h sion required; error- implementation ability of standards code
Yy and prone is tailored to ma- | (e.g. MPI, PVM);
chine tuning required
Parallelizing Minimal code modifi- | Completely de- Dependent on port- Performs well for
. cation; directives in- pendent on com- | ability of standards codes with simple
compilers serted as needed; tun- | piler (e.g. OpenMP); not structure and loop-
ing could be time con- portable to network of | level parallelism
suming workstations to-date;
Data and Annotation required; Compiler per- Dependent on port- Does not handle
K) need code restructuring | formance still in ability of standards unstructured meshes
task paralle to match language’s question to-date (e.g. HPF) and computational
language programming para- pipelines efficiently
digm
Parallel li- Selective replacement | Good when li- Dependent on the Applicable to spe-
. of code sections with brary is tailored machines to which the | cific class of codes
braries library calls; restruc- to machine library has been for which the library
turing may be required ported. has been designed.
to fit library structure

An interactive parallelization tool-kit provides a set of software tools to assist in the analysis,

browsing, editing, and transformation of a serial source code to produce a parallel program. The

p.9 of 37

user operates at a higher level of abstraction, leaving the tool-kit to perform the mundane, error-
prone operations required to realize a particular parallelization strategy specified by the user.

Two major toolkit projects have been undertaken at Rice University and the University of Vi-
enna to support data parallel FORTRAN program. The D editor [29] (derived from ParaScope
[30]) is a browser that is intended to help users to develop Fortran D programs by providing in-
formation at the source level. The latest version of the editor incorporates performance data
gathered by Pablo [31] to guide the user in the parallelization process. The Vienna FORTRAN
Compilation System (VFCS) [32] provides a comprehensive toolset to assist the user to tune the
performance of Vienna FORTRAN programs. A follow-on effort, HPF+ [33], is being built and
is specifically targeted to handle computations involving unstructured meshes. Unfortunately
these toolkits provide no assistance for the conversion from sequential to data-parallel FOR-
TRAN.

A parallelization package capable of starting from sequential source code is Forge Explorer [4].
The user participates in a step-by-step dialogue to initiate data dependency analysis, insertion of
the proper control structures and message passing calls, to generate the final parallel program.
While Forge Explorer can recognize recurrences that can be resolved using computational pipe-
lines, it is limited in its ability to detect complex interprocedural dependencies and properly con-
trol the granularity of the parallel tasks.

Other efforts being carried out in the universities, such as Stanford's SUIF Explorer [34] (derived
from SUIF [35]), Illinois's Polaris [36], and Rice's dHPF [37] can not yet handle large industrial-
based codes. Based on out experience at NASA Ames Research Center, the only effort that can

parallel large sequential codes is CAPTools, developed at the University of Greenwich.

3. The Design of Computer Aided Parallelization Tools

3.1. Design Criteria

Throughout the development of CAPTools, a number of vital criteria were specified to ensure
that industrial and scientific applications can be effectively parallelized onto a wide range of par-
allel architectures. These criteria are:

e handle real world Fortran application codes regardless of their perceived “quality”;

e no allowance for performance limitations of the generated parallel code due to automation;
e generate recognizable code following well-understood parallelization techniques; and

e generate portable code for as wide range of parallel systems as is feasible.

Each of these criteria has a number of implications to the design and implementation of CAP-
Tools. The requirement to handle real world applications without restrictions on FORTRAN

p. 10 of 37

standards® forces all stages of the parallelization process to cater for commonly used code fea-
tures (such as inter-procedural dimension mapping of arrays). Being able to handle these coding
features allows the vast catalogue of legacy applications to be parallelized. Additionally, and
equally as important, it allows the users to continue coding without regard to later parallelization,
so that they may concentrate on the scientific field in which they specialize. This is crucial since
many of these application programmers only employ serial programming as a tool and have no
interest in further diluting their effort by considering parallelization. Forcing them to “think par-
allel” may also not be desirable since it may not be practical to acquire the expertise required to
produce efficient, scalable parallel code. To ensure the success of parallelization tools, it is nec-
essary to embed the “expertise” in parallelizing application codes within them. This will also
satisfy the criteria of not suffering any performance loss due to automation. This approach is
only possible since the tools are designed to follow the recognized “best manual practice” that
has already been demonstrated by many groups [38-44]. The development of the parallelization
tools then becomes a process of abstracting and automating the manual parallelization process
into a series of easily understood stages. These stages can then be used for user interaction to
allow monitoring and some control of the parallelization process, as well as enabling the system
to explain its decisions to the user in as understandable way as possible. As more application
codes are encountered, the expertise in manual parallelization that is required to overcome previ-
ously unforeseen circumstances can be embedded within the tools, thereby increasing their
power.

The use of well understood parallelization techniques coupled with minimal changes to the origi-
nal source code during parallelization enable the recognition criteria to be achieved. The paralleli-
zation process can then be made to consist of a few straightforward transformations only. These
include the addition of communications, the adjustment of loop limits and the addition of execu-
tion control masks where necessary, allowing the remainder of the code to be left unaltered. Rec-
ognition of the generated code is obviously essential if meaningful user interaction is to be main-
tained throughout the parallelization process. It is also vital if further manual tuning of the gener-
ated code is required and allows maintenance of the parallel code.

Finally, portability is achieved by generating code that uses simple generic communication calls
to the CAPTools library CAPLib [45]. The porting of a parallel code to a new system then re-
quires only that CAPLib has been ported onto that system, allowing recompilation to be suffi-
cient. Since CAPLib includes generic MPI and PVM versions, this process is often straightfor-
ward. It also allows for the use of efficient lower-level communication API’s such as the Shmem
library on the Cray T3D and T3E systems without changing the application code.

¥ e.g., Fortran 77 or Fortran 90, including legacy codes that may have originated in Fortran IV etc.

p. 11 of 37

During the development of CAPTools, a number of other features were identified as being essen-
tial and desirable. These came as a result of observations made while using the tools for real
world application codes where, for example, the generated parallel code did not attain the high
quality of the equivalent manually created parallel code. These features specifically support:

e intensive computation required in dependence analysis and other symbolic algebra proc-
essing;

e exploitation of user supplied information, in the form of simple constraints on the values of
the input variables of the application code, in all stages of the parallelization;

e presentation of clear and concise questions, typically relating to input variables of the ap-
plication code, to elicit essential information from the user; and

e browsers for each stage of the parallelization process to allow user inspection and to pro-
vide explanation of why decisions were made.

These features aim to provide a simple interface between the user and the tools enabling the ex-
ploitation of user knowledge in terms that relate to their application. The emphasis on accurate
dependence analysis alleviates the user from the need to prescribe parallelism throughout the ap-
plication. User interaction is maintained at a higher level, typically this is minimal and relates
only to those areas of an application code where, for example, the complex nature of the code
prevented accurate analysis.

3.2. “Best Manual Practice” Parallelization Strategies

To achieve the specified goals, work has focussed on specific, but widely used, parallel pro-
gramming techniques. The first two techniques considered are single block, structured mesh
(regular) application codes, such as Control Volume based codes, and unstructured mesh (irregu-
lar) application codes, such as Finite Element codes. Figure la and Figure 1b show structured
and unstructured meshes and the related data partitioning techniques. In both cases, the core
cells/elements are owned by the processors to which they are allocated with the overlap (also
known as halo) cells being owned by other processors. The basic “owner compute” strategy is
then used so that each processor performs computations relating to owned data only. The over-
lap data is updated by messages sent from the owning processor to the using processor.

p. 12 of 37

Q0og
000C
000C
OO0

KEY:D care oells Ilml’,u)nfom‘lwnlh KLY; D <cxe edement ' ovarkap slerment

Figure 1. a) Structured Mesh Decomposition b) Unstructured Mesh Decomposition.

Both techniques are implemented to allow runtime determination of data partition details after
problem details and processor topology have been specified. Although the techniques have many
similarities, their implementation into application codes requires different approaches.

3.2.1. Structured Mesh Parallelizations

The runtime calculation of processor limits for the data partition is a simple process for struc-
tured mesh codes. Basically, it involves dividing the number of cells in each partitioned mesh di-
mension by the number of processors the user has requested for that dimension. To allow this
flexibility, partition ranges are represented by Jow and high range variables on each processor
(CAP_L and CAP_H respectively) indicating the range of owned data on that processor. The re-

mainder of the parallelization process then consists of:

o adding execution control masks to determine if a processor should execute an instance of a
statement,
e adjustment to loop limits to only cover the owned range of data, and
¢ adding communications to update overlap areas.
An execution control mask for such a parallelization is used to determine if the computation re-
lates to the assignment of data owned on this processor, i.e.
IF (I.ce.CAP L.and.I.le.CAP_H) A(I) =
Similarly, alterations to loop limits involves the use of the partition range variables, also taking
into account the original loop limits to ensure that only data processed in the original loop is
processed in the parallel version:
DO T = MAX(2,CAP L) , MIN(NI-1,CAP_H)
The communications used to update the overlap areas use the CAPLib routine CAP_EXCHANGE
so that all processors can update one of their overlap areas in a single call:
CALL CAP_ EXCHANGE (A(CAP_H+1),A (CAP L),1,CAP TYPE, CAP_RIGHT)

p. 13 of 37

where CAP_TYPE indicates the data type involved in the communication and CAP_RIGHT indi-
cates the processor to be communicated with (in this case, each processor's ‘RIGHT” neighbor).

Reducing the memory requirement so that each processor holds only its core and overlap areas
can then be implemented by adjusting declarations and any necessary array references [46].

3.2.2. Unstructured Mesh Parallelizations

The runtime calculation of the data partition for unstructured meshes is more complex. A graph
partitioning tool such as JOSTLE [47] or MeTis [48] is used to process a graph representing the
topology of an unstructured mesh and return a processor ownership array (CAP_ P), relating each
mesh element to a processor. The processor ownership array is then used to enforce execution
control masks, taking the form:

IF (CAP_P(I).eq. CAP_PROCNUM) A(I) =
where CAP_ PROCNUM is a unique number identifying the executing processor. Updating over-
lapped elements on each processor is performed using a communication that collects data to be
sent before transmission with all received data being unpacked. These communications follow
pre-described communication sets that are calculated based upon the mesh interconnections. A
typical manual parallelization would use an unstructured mesh library (for example CAPLib [45],
or PARTI [49]) requiring a “standard” data structure that will very often be different to that used
in the application. To overcome this, manually introduced loops are typically used to build a
runtime graph of the mesh in the data structure required by the library routines, where these
loops are in-effect “inspector” loops.

The use of local mesh renumbering reduces memory requirements by only storing core and over-
lap data. It also has the side effect of making many loops run over the locally owned set [50].
This is achieved by changing loop limits to be based upon the number of locally owned elements,
enabling any execution control masks within those loops to be removed. The resulting code can
then be made to resemble the original serial code very closely.

3.2.3. Abstraction of the Manual Parallelization Techniques

The automation of these techniques can be broken down into a series of stages where each stage
is relevant to both structured a